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REVIEW

Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other 
receptors
Kerry A. Whalena, Kavya Rakhraa, Naveen K. Mehtaa, Alexander Steinleb,c, Jennifer S. Michaelsona, 
and Patrick A. Baeuerlea,d

aPreclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA; bInstitute for Molecular Medicine, Goethe-University Frankfurt, 
Frankfurt am Main, Germany; cPreclinical and Early Development, Frankfurt Cancer Institute, Frankfurt am Main, Germany; dInstitute for Immunology, 
Ludwig Maximilians University, Munich, Germany

ABSTRACT
The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality 
of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive 
immune response through therapeutic targeting of T cells. While these approaches have markedly 
advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend 
to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, 
have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells 
as potent effectors of the innate immune response has emerged as a promising modality in immunother
apy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, 
with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of 
differentiation 16A (CD16A).
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Introduction

In contrast to T cells, natural killer (NK) cells act as a first line 
of defense and have the ability to detect and clear tumor or 
virally infected cells without any requirement for prior anti
gen-specific activation or differentiation. As such, NK cells 
possess several attractive properties justifying the development 
of agents that harness their therapeutic potential. Here, we 
review recent advances in the use of antibody-based therapies 
targeting the NKG2D/ligand axis to deliver a key activating 
signal that can synergize with CD16A signaling, allowing NK 
cells to mediate tumor cell lysis. The intricate balance between 
activating versus inhibitory signals, which is a hallmark of NK 
cells, calls for the engagement of multiple activating receptors, 
a combination of receptor agonists with inhibitors of NK cell 
checkpoints, and/or combination with T cell therapies, in 
order to maximize therapeutic efficacy in patients.

Like T cells, NK cells are increasingly recognized as having 
high cytotoxic potential when appropriately engaged. This is 
most evident when NK cells are transfected to express 
a chimeric antigen receptor (CAR) identical to those used to 
engineer CAR-T cells. When equipped with a strong activating 
receptor specific for a cell surface antigen, NK cell therapies 
have been shown to drive complete responses in patients.1 

Likewise, a T cell receptor complex (TCR) in NK cells 
enhanced their effector function in a similar manner to 
T-cells.2,3

NK cell therapies have several advantages over T cell thera
pies. Most notable is their potential for allogenic, off-the-shelf 

use because they avoid graft-versus-host reactivity due to the 
lack of a TCR. In addition, NK cell therapies are typically 
associated with less severe toxicities, including immune effec
tor cell-associated neurotoxicity syndrome (ICANs) and cyto
kine release syndrome (CRS), as compared to certain T cell- 
based therapies.4–6 However, there remain several key chal
lenges for NK cell-based cell therapies, including inefficient 
transgene delivery, NK cell manufacturing complexities, 
exhaustion and limited persistence of genetically engineered 
NK cells.7

One of the most significant revolutions in cancer therapy is 
the development of monoclonal antibodies (mAbs) that target 
T cells rather than cancer cells to effectively treat, and in some 
cases, enable durable responses, in cancer patients. Unlike cell 
therapies, mAbs engaging NK cells, much like those targeting 
T cells, have the potential to reach every effector NK cell, rely 
on standardized mAb manufacturing methods, and enable 
predictable pharmacokinetic properties.

NK cell engagement has long been leveraged in the clinic by 
IgG1 mAb-based cancer therapies exerting antibody- 
dependent cellular cytotoxicity (ADCC) activity. ADCC is 
primarily mediated by an interaction between the CD16A/Fc- 
gamma receptor IIIA (FcγRIIIa) expressed on NK cells and the 
Fc gamma domain 1 (Fcγ1) of mAbs that recognize tumor- 
associated cell surface antigens on cancer cells. Many chimeric, 
human, and humanized IgG1 antibody therapeutics, such as 
rituximab (targeting CD20), daratumumab (CD38), and tras
tuzumab (human epidermal growth factor receptor 2- HER2), 
engage CD16A.8 However, these antibodies leave another key 
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NK cell-activating receptor, namely NKG2D, untapped. 
NKG2D is a potent modulator of NK cell activation that has 
recently emerged as an important target in the immuno- 
oncology field.9,10 Strategies to therapeutically harness the 
activity of NKG2D are still in early development.

The biology of NK cells versus T cells in the context of 
cancer therapy

Among immune cells, NK cells are most closely related to 
cytotoxic T cells. The latter encompasses T cell subsets, includ
ing CD8+ and CD4+ T cells, gamma-delta T cells, and natural 
killer T (NKT) cells, all of which contain cytotoxic granules 
filled with cysteine proteases, called granzymes, and a pore- 
forming protein called perforin. NK cells, NKT cells and 
gamma-delta T cells belong to the innate immune system and 
serve as a first line of defense against pathogens, while CD8+ 
and CD4+ T cells are elements of the adaptive immune system, 
which are highly specific for pathogenic antigens, but first need 
to be primed, selected, and expanded in response to peptide 
antigen stimuli.11 Like T cells, NK cells are cytotoxic by virtue of 
having secretory granules filled with the same granzymes and 
a variant of perforin.12 Once delivered into a cytolytic synapse 
formed between NK cell and target cell, perforin forms a pore in 
the target cell membrane that enables transmembrane delivery 
of granzymes. Inside the target cell, granzyme B activates pro- 
caspases 3 and 7, eliciting programmed cell death, or apoptosis, 
while other granzymes such as granzyme A, H, K and M cleave 
numerous other protein substrates, causing target cell damage.13 

Like T cells, NK cells also release inflammatory cytokines and 
chemokines upon activation.14

What is fundamentally different between cytotoxic T cells 
and NK cells is the mechanism by which they recognize and 
are activated by target cells. T cells recognize their target cells 

via their TCR, which has six distinct subunits and is among the 
most intricate receptor complexes in our body.15,16 The TCRs 
of CD8+ and CD4+ T cells utilize their variant alpha and beta 
subunits to recognize specific peptide/major histocompatibil
ity complexes (MHC) displayed on target cells. A density as 
low as five copies of a specific peptide/MHC complex on 
a target cell is sufficient for a specific T cell clone to recognize 
target cells and induce their lysis.17 This relies on a powerful 
signal amplification downstream of the TCR. Some effector 
cells of the innate immune system, including gamma-delta 
T cells and NKT cells, instead utilize an invariant TCR to 
recognize metabolites presented by butyrophilins and lipids 
presented by CD1d, respectively.18,19 In contrast, NK cell acti
vation does not depend on one “master” activating receptor 
equivalent to the TCR; instead, NK cell activity is regulated by 
the balance of activating and inhibitory signals transduced by 
several cell surface receptors.20 A comprehensive description 
of these receptors is found in several recent reviews.21–23 The 
interactions between tumor cells and T cells or NK cells that 
are the focus of this review are shown in Figure 1. Briefly, NK 
cell-activating and inhibitory receptors fall into two classes, 
human leukocyte antigen (HLA) and non-HLA specific. HLA- 
specific activating receptors include the activating killer Ig-like 
receptors (aKIR)s and Natural killer group 2C (NKG2C)/ 
CD94 heterodimer. Activation of these receptors via ligand 
engagement triggers NK-mediated effector functions.24 Non- 
HLA-specific activating receptors include CD16A and 
NKG2D, as well the natural cytotoxicity receptors (NCRs), 
NKp30, NKp44 and NKp46. NCRs play a primary role in 
cytotoxicity of tumor cells and in regulating both innate and 
adaptive immune responses.25 Lastly, there are several activat
ing co-receptors, such as DNAX accessory molecule-1 

Figure 1. Select activating and inhibitory receptors on NK cells and CD8 T cells and their corresponding ligands. NK cell activation is regulated by the balance of signals 
from activating and inhibitory receptors present on the cell surface, whereas T cell signalling is driven primarily through a master activating receptor, the TCR, in 
addition to multiple co-stimulatory and co-inhibitory receptors. Select activating receptors (+) are presented as green positive signal; select inhibitory receptors (-) are 
depicted by a red negative signal.
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(DNAM-1), 2B4 and NKp80, that promote immune cell cross 
talk and tumor cell killing through amplification of signals 
coming from NCRs and NKG2D.26–28

HLA-specific inhibitory receptors present on NK cells are 
important for negatively regulating cellular activity upon 
engagement with HLA molecules, including the inhibitory 
killer Ig-like receptors (iKIRs)/CD158 family and the CD94/ 
Natural killer group 2A (NKG2A) (CD94/CD159a) 
heterodimer.29 Several clinical trials are ongoing with mAbs 
designed to reinvigorate NK cells by blocking inhibitory 
ligands on tumor cells or the inhibitory receptor, including 
anti-NKG2A monalizumab and anti-killer cell immunoglobu
lin like receptor, three Ig domains and long cytoplasmic tail 2 
(KIR3DL2) lacutamab, which are under development by 
Innate Pharma (NCT05321147, NCT04984837).30–32 

Antibodies targeting killer cell immunoglobulin like receptor, 
three Ig domains and long cytoplasmic tail 1–3 (KIR2DL1-L3) 
have shown limited success in the clinic. Lirilumab, a mAb that 
targets multiple iKIRs, has failed to meet its clinical 
endpoints.33,34

In addition to the HLA-specific inhibitory receptors, non- 
HLA inhibitory receptors also provide important regulatory 
control for NK cells. This includes the immune checkpoint 
molecules programmed cell death 1 receptor (PD-1), T cell 
immunoreceptor with Ig and ITIM domains (TIGIT), T cell 
immunoglobulin and mucin domain-containing protein 3 
(TIM-3), cluster of differentiation 96 (CD96), sialic acid bind
ing Ig like lectin 7 (siglec-7), leukocyte-associated immunoglo
bulin-like receptor 1 (LAIR-1), and inhibitor receptor protein 
(Irp60).29,35–39 PD-1, considered the prototypic immune 
checkpoint molecule, negatively regulates T cell function 
upon interaction with programmed death-ligand 1 and 2 (PD- 
L1 and PD-L2), on cancer cells and on immune cells in the 
tumor microenvironment (TME) and this axis has been tar
geted with great success in the clinic with antagonist mAb 
therapies.40,41 Tumor-experienced NK cells have also been 
shown to express PD-1 and PD-L1 in both preclinical and 
clinical settings.42–49 Preclinical data have demonstrated the 
importance of this pathway in suppressing NK cell activity and 
may contribute to the activity of anti-PD-1/PD-L1 mAb thera
pies in the clinic.42,48

In summary, NK cell activity is kept in a delicate balance 
and tightly controlled by a network of multiple regulatory 
proteins. Given the inhibitory milieu for NK cell signals in 
the TME, it is attractive to engage NK cell-activating receptors, 
such as CD16A and NKG2D, and an inhibitory receptor, such 
as PD-1, to unleash tumor cell lysis by NK cells.

Leveraging the CD16A/Fc-gamma receptor IIIA to 
engage NK cells

Fc gamma receptors (FcγRs) are a family of proteins expressed 
on the surface of immune cells which bind the Fc portion of 
antibodies to mediate immune effector functions.50 All FcγRs 
are activating, with the exception of FcγRIIB (CD32B), which 
is the only known inhibitory receptor and is the predominant 
FcγR present on B cells where it serves as a critical mediator of 
B-cell homeostasis.51 Activating receptors include the high- 

affinity FcγRI (CD64), a receptor primarily responsible for 
mediating antibody-dependent cellular phagocytosis (ADCP), 
the highly abundant FcγRIIA (CD32A), a receptor that facil
itates phagocytosis and endocytosis, and FcγRIIIb (CD16B), 
a receptor present on granulocytes that mediates opsonization 
of microbes.52,53 Importantly, all of these receptors are notably 
absent in NK cells.

The most well-characterized and predominant activating 
receptor on NK cells is FcγRIIIA, or CD16A, which binds to 
the Fcγ domain of various IgG antibody isotypes. Importantly, 
CD16A is expressed only on mature NK cells, which is the 
CD56dim subset present primarily in the periphery, whereas 
the majority of NK cells present in tissues are the less mature, 
CD56bright population and express low levels of 
CD16A.20,54,55 NK cells are naturally coated with serum IgG 
bound to their CD16A receptors via a low-affinity 
interaction.56 CD16A, transmembrane receptor with two 
extracellular Ig-like domains and a short cytoplasmic tail, 
lacks an intrinsic signaling domain and thus requires immu
noreceptor tyrosine-based activation motif (ITAM)-bearing 
signaling proteins, CD3 zeta (CD3ζ) and/or Fc epsilon RI 
(FcϵRiγ), to transduce signals upon binding to IgG. Upon 
CD16A engagement, recruitment and phosphorylation of 
other kinases result in calcium influx and degranulation. 
Calcium influx is one of the major signals for triggering degra
nulation and ADCC and enables nuclear factor of activated 
T-cells (NFAT) translocation into the nucleus to induce the 
transcriptional program to drive an inflammatory response.57

MAbs for cancer therapy are designed to simultaneously 
bind a cell surface antigen on cancer cells and CD16A on NK 
cells. These mAbs function like an NK cell-engaging bispecific 
antibody by bridging NK cells with cancer target cells for 
redirected lysis via ADCC. It is the human IgG1 isotype (and 
murine IgG2a/c ortholog) that most effectively mediates 
ADCC, as well as complement-dependent cytotoxicity (CDC) 
and ADCP.58 Support for a role of CD16A in the anti-tumor 
activity of hIgG1 mAb therapies comes from a polymorphism 
of CD16A that reduces its affinity for the Fc gamma domain of 
mAbs.59 The lower affinity isoform of CD16A is associated 
with decreased response rates for rituximab in non-Hodgkin 
lymphoma.60 Additional evidence for the role of CD16A in NK 
cell-mediated ADCC comes from modifications of the Fcγ1 
domain of mAbs that can enhance their affinity for FcγRs 
resulting in more potent target cell lysis.61 These modifications 
include specific mutations in the Fcγ1 domain or prevention of 
fucosylation in the N-linked carbohydrate moiety of hIgG1. 
Amino acid (AA) substitutions in the Fcγ1 domain of IgG1, for 
example S239D/I332E and S298A/Q333A/K334A, have been 
shown to increase the affinity of binding to CD16A and 
enhance ADCC, and have been covered in detail in recent 
reviews.61–66 Prevention of fucosylation in the N-linked carbo
hydrate moiety of hIgG1 is another way to augment Fc-effector 
functions, as the presence of fucose has been shown to steri
cally hinder optimal interaction between IgG1 and CD16A.67 

Afucosylation can be achieved by genetic modification of the 
host biosynthesis pathways, post-translational enzymatic mod
ification or through the use of small molecule inhibitors.68–71 

The most robust methods of complete afucosylation include 
deletions of either the fucosyltransferse (FUT8) enzyme or the 
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enzyme responsible for generating a key intermediate of 
fucose, GDP mannose 4,6-dehydratase (GMD), in mammalian 
host systems.70,71

Approved Fc-enhanced antibodies include the 
Fcγ1-modified antibody margetuximab (targeting HER-2) 
and the afucosylated antibody mogamulizumab (targeting 
C-C chemokine receptor type 4-CCR4).72,73 In addition to 
introducing antibodies to enhance Fc functionality, other anti- 
tumor agents, such as lenalidomide, a degrader of the multi
functional protease cereblon have been reported to enhance 
NK cell activity by lowering the threshold required for NK cell 
activation by CD16A and other receptors.74,75 The combina
tion of lenalidomide and the anti-CD38 IgG1 mAb, daratu
mumab, is now standard-of-care treatment for multiple 
myeloma (MM) patients.76

Activating CD16A through an anti-CD16A-specific antibody 
rather than modification of the Fcγ domain binding is an alter
nate approach to activating NK cells. This approach has the 
advantage of preventing co-engagement of CD16B, the compe
titive and highly abundant glycosylphosphatidylinositol (GPI)- 
anchored FcγR expressed on granulocytes, which has been 
shown to act as a decoy receptor on neutrophils, reducing 
ADCC activity.50,77 Furthermore, engaging CD16A with an 
engineered binder reduces competitive binding of excess native 
serum IgG1 antibodies to CD16A. Affimed’s AFM13, a CD30/ 
CD16A-bispecific tandem diabody (Tandab) that exemplifies 
this approach, has shown encouraging clinical activity in 
Hodgkin lymphoma (HL) patients when administered in com
bination with the anti-PD-1 mAb pembrolizumab.78,79 

Intriguingly, a cell therapy generated by coating cord blood- 
derived NK cells with the Tandab has shown a very high rate of 
complete responses in HL patients.80 RO7297089, a bispecific 
antibody from Genentech that targets both B-cell maturation 
antigen (BCMA) and a unique binding site on CD16A resulting 
in increased tumor cell killing compared to Fc-enhanced tumor- 
targeting antibodies, was tested in a phase 1 study but does not 
appear to be under further development.81,82 GT-Biopharma 
has generated both bi- and tri-specific NK cell engagers 
(NKCEs) using camelid nanobody technology. These molecules 
contain a camelid nanobody that binds CD16A, a single-chain 
variable fragment (scFv) that recognizes a tumor antigen and 
a human wild-type interleukin 15 molecule to enhance NK cell 
activity. GTB-3560 targeting CD33 is currently in IND-enabling 
development (NCT03214666).83,84

Since NK cell activation is governed by multiple receptors, 
efforts are underway to simultaneously engage other activating 
receptors beyond CD16A, such as NKp30 and NKp46, as 
reviewed by Phung et al and Demaria et al.85,86 Compass 
Therapeutics generated CTX-8573, a bispecific engager 
which contains an anti-NKp30 fragment antigen-binding 
(Fab) fragment linked to the C-terminus of an anti-BCMA 
IgG1 antibody containing an afucosylated Fc gamma domain 
for enhanced CD16A engagement, but development has been 
terminated.87 Innate Pharma aims to target activating recep
tors NKp46, CD16A, and tumor-associated antigens via their 
Antibody-based NK cell Engager Therapeutics (ANKET) plat
form, which consists of both trivalent and tetravalent NKCEs. 
Trivalent engagers include IPH6401, a BCMA-targeting 
ANKET, and IPH6101, which targets CD123 and is currently 

in Phase 1 clinical trials in hematological malignancies. The 
tetravalent ANKET IPH6501, which targets CD20 and con
tains an interleukin-2 variant (IL-2 v), is currently in preclini
cal development (NCT05086315).88,89

Role of the NKG2D/ligand axis in immune surveillance

Another key activating receptor is NKG2D, which is not only 
expressed on NK cells, but also on certain T cell populations, 
including subpopulations of CD8+, NKT and gamma/delta 
T cells.90,91 NKG2D recognizes eight distinct ligands that are 
upregulated on tumor cells: MHC class I chain-related protein 
A (MICA), MHC class I chain-related protein sequence 
B (MICB), and UL-16- binding proteins (ULBPs) named 
ULBP1 through ULBP6.91,92

Upon engagement with one or more of these ligands, 
NKG2D triggers a downstream signaling cascade in effector 
cells leading to the formation of a cytolytic synapse. NKG2D is 
expressed as a homodimer and lacks its own signaling domain. 
It therefore relies on binding to the adaptor protein DNAX- 
activating protein 10 (DAP10), which recruits phosphoinosi
tide 3-kinase(PI3K) and growth factor receptor bound 2 pro
tein (Grb2).93 Activation of these signaling proteins triggers an 
increase in intracellular calcium concentration, actin cytoske
leton rearrangement, and activation of transcription factors, 
including NFAT and nuclear factor kappa-light-chain- 
enhancer of activated B cells (NFKB). In NK cells, these signals 
culminate in cytotoxicity by release of granzymes, perforin and 
cytokines. Direct target cell killing by NKG2D ligation on NK 
cells has been demonstrated using NKG2D ligands, such as 
MICA or ULPB2, fused to a mAb that recognizes a tumor- 
associated antigen.94–96 In the case of T cell populations that 
express NKG2D, the axis may serve a costimulatory role in 
lowering the threshold for lysis while the primary recognition 
of target cells is via the TCR.97

NKG2D ligation serves an important role in clearing cells 
with stress-induced damage, including those undergoing nas
cent carcinogenesis. NKG2D ligands are not expressed on 
healthy cells, but appear on the cell surface when cells are 
exposed to a variety of stresses, including metabolic stress, 
genotoxic stress, irradiation, viral infection, or malignant 
transformation.91,98 As shown in Figure 2, gene expression 
profiling of 32 different human cancer tissues from The 
Cancer Genome Atlas (TCGA) database revealed that, com
pared to other NKG2D ligands, MICA is the most consistently 
and highly expressed across all solid tumors and hematological 
malignancies. The second broadest expression pattern is 
exhibited by MICB, which is closely related in sequence to 
MICA. This makes both MICA and MICB (MICA/B) attrac
tive pan-cancer targets.

MICA/B contain key structural differences compared to 
other members of the NKG2D ligand family. While all ligands 
consist of MHC class I-related polypeptide chains that lack 
beta-2-microglobulin and peptide association, MICA/B 
ligands contain alpha 1, alpha 2 and alpha 3 domains, whereas 
the ULBPs only contain the alpha 1 and alpha 2 domains and 
have low (25%) sequence identity to MICA/B. Despite differ
ences in protein sequence, co-crystal structures of NKG2D 
with MICA or with ULBP3 revealed that NKG2D binds to its 
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Figure 2. Broad expression of MICA and MICB in human cancers. mRNA gene expression analysis of thirty-two cancer indications from the TCGA database. NKG2D 
ligands analyzed include MICA, MICB and ULBP1-6. Abbreviations for indications can be found here: https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables 
/tcga-study-abbreviations. Abbreviations are captured in the order they appear starting from left to right. THCA: thyroid carcinoma, BLCA: bladder urothelial carcinoma, 
ACC: adrenocortical carcinoma, MESO: mesothelioma, HNSC: head and neck squamous cell carcinoma, CESC: cervical squamous cell carcinoma and endocervical 
carcinoma, ESCA: esophageal carcinoma, LUSC: lung squamous cell carcinoma, DLBC: lymphoid neoplasm diffuse large B-cell lymphoma, THYM: thymoma, LAML: acute 
myeloid leukaemia, UVM: uveal melanoma, PRAD: prostate adenocarcinoma, KICH: kidney chromophobe, LGG: brain lower grade glioma, LIHC: liver hepatocellular 
carcinoma, SKCM: skin cutaneous melanoma, PCPG: pheochromocytoma and paraganglioma, UCS: Uterine carcinosarcoma, OV: ovarian serous cystadenocarcinoma, 
KIRP: kidney renal papillary carcinoma, GMB: glioblastoma multiforme, CHOL: cholangiocarcinoma, TGCT: testicular germ cell tumors, BRCA: breast invasive carcinoma, 
KIRC: kidney renal clear cell carcinoma, SARC: sarcoma, LUAD: lung adenocarcinoma, STAD: stomach adenocarcinoma, PAAD: pancreatic adenocarcinoma, UCEC: uterine 
corpus endometrial carcinoma, READ: rectum adenocarcinoma, COAD: colon adenocarcinoma.

Figure 3. Structure of the NKG2D-MICA complex. . MICA is shown in blue. The alpha 1 and alpha 2 domains of MICA form the interface with the NKG2D receptor, 
depicted in green. The arrow indicates the region containing proteolytic cleavage sites of MICA which are proximal to the cell membrane. (Figure adapted from https:// 
www.rcsb.org/, PDB 1HYR (complex of MICA and NKG2D).

MABS 5



ligands through topologically similar but distinct sets of inter
face residues of the alpha 1/alpha 2 domains using a rigid 
adaptation mode.99 Of note, the alpha 3 domain of MICA, 
which connects the other two domains to the plasma mem
brane of NK cells, is not involved in this interaction 
(Figure 3).100

Cancer cells avoid NKG2D-mediated NK cell lysis by 
exploiting the unique alpha 3 region of MICA/B, which is the 
target for proteolytic shedding of the extracellular domain 
(ECD) from the cancer cell surface. Shedding is enabled by 
multiple proteases that most cancer cells express on their cell 
surface or release into the TME. It has been reported that 
matrix metalloproteinase-9 (MMP-9)/ matrix metalloprotei
nase −14, (MMP-14), a disintegrin and metalloproteinase-10 
(ADAM10), and a disintegrin and metalloproteinase-17 
(ADAM17) are all able to recognize and cleave sequences 
located in the stalk region between the alpha 3 domain and 
the transmembrane domain of MICA.101–103 Several cleavage 
sites have been mapped by mutational analysis that are prox
imal to the transmembrane domain of MICA (Figure 3). 
A prerequisite for cleavage of MICA/B appears to be the 
reduction of a single disulfide bridge in the alpha 3 domain 
by protein disulfide isomerase endoplasmic reticulum protein 
5 (ERP5), which may enable MICA/B to adopt a protease- 
sensitive conformation.104

Shedding of MICA/B from the tumor cell membrane leads 
to an accumulation of soluble MICA/B in the blood of cancer 
patients.105,106 The potentially pivotal role of the NKG2D/ 
ligand axis in immune surveillance is evident from the negative 
prognostic value of soluble MICA in a variety of cancers, 
including solid tumors, such as hepatocellular carcinoma 
(HCC), as well as hematological malignancies, like MM. This 
has been corroborated in a meta-analysis including many 
other cancer indications.107 Of note, expression of MICA on 
cancer cells, as observed in tumor biopsies, is a positive prog
nostic factor for improved overall survival.108

Collectively, these data suggest that therapies preventing 
MICA/B shedding, and thereby preserving MICA/B on the 
cell surface to promote NKG2D signaling, may have therapeu
tic potential in treating diverse cancers. However, MHC- 
related proteins MICA/B exhibit a high degree of polymorph
ism, which poses a potential challenge with this approach. 
Nearly 150 alleles have been identified for MICA and 50 alleles 
for MICB across the population.109 When polymorphic amino 
acid residues are present in target epitopes of mAbs, they may 
negatively impact antibody binding affinity across allelic var
iants and reduce target recognition in the diverse patient 
population. Great care must therefore be taken to identify 
mAbs that broadly recognize MICA/B alleles. Given the high 
sequence homology between MICA/B, it is possible to discover 
cross-reactive mAbs that recognize both NKG2D ligands. 
A MICA/B cross-reactive mAb with coverage of the most 
common MICA/B alleles should be able to overcome the 
challenges posed by polymorphisms, since each tumor may 
express up to four relevant target alleles for MICA and MICB.

Nevertheless, given the large number of activating and 
inhibitory receptors on NK cells, even if NKG2D signaling is 
preserved or enhanced, its activity is contextually dependent 
on the NK cell activation status. This justifies the development 

of therapeutic strategies with multi-modal mechanisms of 
action that combine NKG2D agonism with additional activat
ing signals for NK cells.

Therapies leveraging the NKG2D-ligand axis for 
cancer therapy

The compelling role of the NKG2D-MICA/B axis in cancer 
biology has triggered numerous attempts to leverage these 
pathways for therapeutic targeting. Approaches include engi
neered T or NK cells, NK cell engagers, antibody-drug con
jugates (ADCs), vaccines and mAbs (Figure 4). Therapeutics in 
active clinical development targeting the axis are highlighted in 
Table 1.

Celyad Oncology has developed two autologous (CYAD-01, 
CYAD-02) and one allogenic (CYAD-101) T cell therapies that 
express a CAR based on the ECD of NKG2D. Although 
CYAD-01 and CYAD-101 are no longer in clinical develop
ment, CYAD-02 is being evaluated in acute myeloid leukemia 
(AML) and myeloid dysplastic syndrome (MDS) patients in 
a Phase 1 study where two patients were reported to have 
achieved a complete marrow response (NCT04167696).110–114

Nkarta Therapeutics is developing NKX101, an allogenic 
NK cell therapy based on NK cells collected from normal 
human donors by apheresis and expanded ex vivo. Like 
Celyad, the CAR utilizes the ECD of NKG2D to target 
NKG2D ligands on tumor cells; the CAR-NK cells also express 
an interleukin-15 (IL-15) receptor/IL-15 fusion protein, which 
allows for the enhancement of NK cell proliferation, cytotoxi
city, cytokine release and maintenance.115 NKX101 is being 
evaluated in a Phase 1 study of relapsed or refractory AML and 
MDS patients (NCT04623944).116 Of five AML patients trea
ted, three were recently reported to have achieved a complete 
response with hematological recovery.117 Other clinical trials 
of CAR T or CAR gamma-delta T cells that incorporate the 
ECD of NKG2D are ongoing and are reviewed by Curio 
et al.118

Fate Therapeutics has developed an allogenic MICA/ 
B-directed NK cell therapy, FT536, based on the company’s 
human-induced pluripotent stem cell (iPSC) platform. Rather 
than using the ECD of NKG2D to target MICA/B, FT536 
expresses a CAR harboring a scFv domain with specificity for 
the alpha 3 domain of MICA/B, which prevents shedding of 
MICA/B from the tumor cell surface. This approach was 
shown to have superior anti-tumor activity as compared to 
an NKG2D-based CAR in preclinical models.119 The engi
neered NK cells are further enhanced by expression of a high- 
affinity, non-cleavable version of CD16A (for combination 
with mAb therapies), as well as an IL-15 receptor/IL-15 fusion 
protein and knockout of the CD38 gene for enhanced NK cell 
activity and augmented metabolic fitness and persistence120. 
Fate recently announced that it is discontinuing development 
of the program.121

While these cell therapies speak to the industry’s interest in 
targeting NKG2D ligands for cancer therapy and have shown 
initial signs of efficacy, all involve complex manufacturing of 
genetically engineered cells and will likely be limited by the 
number of cells that can be safely administered to patients. 
Furthermore, therapies using the ECD of NKG2D for MICA/B 
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targeting will be hampered by the frequent shedding of the two 
NKG2D ligands. In addition, there is a potential for lack of 
specificity given the ability of the NKG2D ECD to interact with 
other NKG2D ligands for which the safety consequences are 

unknown. Lastly, MICA/B can be expressed on cellular pro
ducts as a consequence of stressful cell isolation and expan
sion, which may trigger fratricide and thereby limit the 
manufacturing yield of engineered cells.

Figure 4. Schematic representation of therapeutic modalities targeting the MICA/B pathway. (a) Protein-based therapeutics targeting the MICA/B pathway including an 
ADC that delivers a cytotoxic payload to MICA/B-expressing tumor cells, mAbs that induce immune-mediated tumor cell killing by preventing shedding of cell surface 
MICA/B or by binding to sMICA/B to form a NKG2D-activating complex, and a TriNKET that simultaneously binds NKG2D and CD16A on NK cells and targets Her2- 
expressing tumor cells. (b) Allogeneic or autologous NKG2D based r CAR)T-cell therapies activated by NKG2D ligands including MICA/B and (c) an allogeneic NKG2D 
based CAR NK cell therapy and iPSC-derived allogeneic MICA/B scFV-based CAR NK cell therapy activated by NKG2D ligands including MICA/B. (d) Vaccine-induced 
production of antibodies targeting the MICA/B alpha 3 domain.
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Biologics, such as mAbs and antibody constructs like 
NKCEs, represent an alternative approach to leveraging the 
NKG2D pathway. NKCEs consisting of the ECD of NKG2D 
fused to Fab fragments directed against CD16A (NKG2D- 
CD16) have demonstrated potent target cell lysis in preclini
cal studies.122 NKCEs that use the MICA ECD fused to scFvs 
against tumor- or TME-associated antigens, such as vascular 
endothelial growth factor receptor 2 (VEGFR2), CD24, CD20 
and BCMA, have also been generated.96,123–125 Such con
structs were tested preclinically and demonstrated specific 
NK cell activation and target cell lysis. However, the potential 
cleavage of the ECD of MICA by proteases in the TME is 
a liability. This is the case for those NKCEs that incorporate 
full-length, unmodified MICA ECD, such as the VEGR2 and 
CD24 constructs. In addition, the affinity of MICA for 
NKG2D is weak and may limit the potency of these mole
cules, supporting the use of higher-affinity/avidity constructs 
such as those from Dragonfly Therapeutics and Xencor, 
which simultaneously bind to tumor-associated antigens 
and NK cells via CD16A and NKG2D. DF1001, a Tri- 
specific NKCE (TriNKET) from Dragonfly Therapeutics, is 
composed of three antibody fragments simultaneously target
ing tumor cells via HER2 and NK cells via both CD16A and 
NKG2D. DF1001 is currently being evaluated in Phase 1/2 
clinical studies of patients with advanced solid tumors 
(NCT04143711). Xencor’s XmAb® bispecific NKE molecule, 
which targets B7 homolog 3 protein (B7H3) and NKG2D, 
and is currently in preclinical development, is another exam
ple of a NKCE that leverages NKG2D and CD16A to promote 
NK cell activation and lysis of tumor cells.126 These 
approaches are similar to the ANKET platform described 
above, with the addition of an NKG2D-targeting arm.

Several mAbs have been generated that directly target 
MICA/B. These antibodies all aim to augment the NKG2D 
signaling axis and have diverse mechanisms of action. One 

strategy involves targeting soluble MICA/B (sMICA/B) as 
a means to modulate the interaction of sMICA/B with 
NKG2D, which is thought to be detrimental to NK cell 
function via impairment of NKG2D functionality.106,127–130 

For example, the antibody B10G5 binds to shed sMICA/B 
to stimulate NK cells through two proposed mechanisms of 
action, namely clearance of sMICA/B and formation of 
antibody/MICA/B complexes that may agonize NKG2D 
on NK and T cells. B10G5 has been demonstrated to 
restore NK cell function and remodel the TME, resulting 
in tumor growth inhibition in preclinical models.131–133

Innate Pharma recently reported results for the MICA/B 
targeted ADC MICAB1. The mAb used to generate the ADC 
was selected due to its ability to stimulate a high level of 
MICA/B internalization and engineered to be Fc-silent. The 
antibody is coupled to first-generation pyrrolobenzodiaze
pine dimers (PBD) as a cytotoxic payload. Treatment with 
MICAB1 in preclinical models was effective at single, low 
doses in both human xenograft and patient-derived xenograft 
models.134 The current development status of this agent is 
unknown.

The generation of therapeutics that inhibit shedding of 
MICA/B is an emerging strategy to leverage NKG2D 
ligands.135,136 One approach to achieve this is the induction 
of antibodies in response to vaccination with the alpha 3 
domain of MICA/B. These antibodies can prevent shedding 
by binding MICA/B at the proteolytic cleavage site. Robust 
anti-tumor responses dependent upon both NK and T cells 
were generated in response to vaccination in preclinical 
studies.137 Furthermore, engaging multiple effector cells 
mediated protective immunity against tumors with common 
escape mechanisms, such as loss of MHC-I expression.137 

A potential limitation to this approach is the lack of control 
over how much antibody is produced and the functionality of 
the antibody response.

Table 1. Therapeutics targeting NKG2D in active clinical development. Abbreviations used: CAR: Chimeric antigen receptor, NKG2D: Natural Killer Group 2D.

Company (Asset) Modality Molecule properties Structure Indication
Development Phase/ 
Clinical trial number

Cullinan Oncology 
(CLN-619)

Monoclonal antibody Tumor target: MICA/B 
NK cell target: NKG2D, CD16A

Advanced solid 
tumors

Phase 1 
NCT05117476

Dragonfly 
Therapeutics 
(DF1001)

NK cell engager Tumor target : HER2 
NK cell target: NKG2D 
NK cell target: CD16A

Advanced solid 
tumors

Phase 1/2 
NCT04143711

Celyad 
(CYAD-02)

Allogeneic CAR T-cell 
therapy

Target: All NKG2D ligands 
CAR: NKG2D extracellular domain 
Additional modification: MICA/B 

knockdown to reduce fratricide

Acute myeloid 
leukemia 

Myelodysplastic 
syndrome

Phase 1 
NCT04167696

Nkarta (NKX101) Human donor allogeneic 
CAR NK cell therapy

Target: All NKG2D ligands 
CAR: NKG2D extracellular domain 
Additional modification: IL-15 R/IL15 

fusion

Acute myeloid 
leukemia 

Myelodysplastic 
syndrome

Phase 1 
NCT04623944
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A promising approach to targeting inhibition of MICA/B 
shedding is being undertaken by Cullinan Oncology with the 
generation of CLN-619, a humanized IgG1 antibody that is 
currently the only MICA/B-targeted mAb in the clinic. CLN- 
619 prevents shedding of MICA/B from cancer cells by bind
ing to the alpha 3 domain and contains an active Fcγ1 domain 
to drive ADCC and ADCP. As described above, the MICA/B 
genes are highly polymorphic, yet CLN-619 has been demon
strated to have broad reactivity to all allelic variants tested. 
Reduced levels of shed MICA and a concomitant increase in 
MICA on the surface of tumor cells has been observed with 
CLN-619 treatment. Importantly, the alpha 1 and alpha 2 
domains of MICA, which bind to NKG2D, are unencumbered 
by the bound antibody. In fact, CLN-619 enhances the binding 
of MICA to NKG2D, which appears to be dependent on the 
Fcγ1 domain of the antibody that can concomitantly bind to 
CD16A on NK cells. Notably, CLN-619 shows compelling 
single-agent activity at low doses in tumor xenograft models, 
where its activity critically relies upon a functional Fcγ1 
domain.138,139

Stabilization of MICA/B by CLN-619 leads to accumulation 
of these NKG2D ligands on the tumor cell surface, thereby 
overcoming immune evasion by MICA/B shedding. This likely 
maximizes ADCC and ADCP functions of the antibody due to 
increased target antigen density. Importantly, CLN-619 has the 
potential to activate NK cells via simultaneous and perhaps 
synergistic engagement of two key activating receptors: 
NKG2D and CD16A. Cooperation between the two receptors 
is supported by published data showing engagement NKG2D 
can lower the activation threshold of several receptors includ
ing CD16A.140 Cooperation between the two receptors may be 
important when considering NK cell-activating receptors in 
the TME are often downmodulated141–143. CLN-619 is cur
rently in a Phase 1 clinical trial in patients administered alone 
or in combination with pembrolizumab in patients with 
advanced solid tumors (NCT05117476). Given the broad 
tumor expression of the pathway (Figure 2), it is anticipated 
that CLN-619 may have the potential for pan-cancer activity.

Conclusions and outlook

While therapeutic success has been achieved with engagement 
of T cells using multiple modalities, this review highlights the 
challenges and opportunities to accomplish this by engaging 
NK cells. Although certain NK cell therapies are beginning to 
show some promise in the clinic, an off-the-shelf mAb therapy 
has the advantage of ease of manufacturing and the potential to 
engage most if not all NK cells in a patient for lysis of cancer 
cells. However, treatment with mAbs comes with potential 
liabilities, including the possibility of recruiting exhausted, 
dysfunctional NK cells. In addition, the intricate interplay 
between negative and positive regulatory receptors on NK 
cells makes it difficult to simply engage a single receptor to 
achieve therapeutic benefit. Nevertheless, one approach that 
has met with success is leveraging activation of the CD16A 
receptor on NK cells via tumor antigen-targeted mAbs mediat
ing ADCC. Another attractive target on NK cells is the activat
ing receptor NKG2D. However, the shedding of its most 
abundantly expressed ligands MICA/B must be addressed in 

order to maximize the therapeutic potential of engaging this 
pathway. To fully unleash their killing potential, NK cells in the 
immunosuppressive TME may require more than one activat
ing stimulus, for example simultaneous engagement of both 
CD16A and NKG2D. The ultimate therapeutic potential for 
NK cell-activating therapeutics in the clinic may be enabled 
when delivered in combination with therapies that enhance or 
complement NK cell activation, such as lenalidomide, cytokines 
or checkpoint inhibitors. Combination with checkpoint inhibi
tors provides the opportunity for dual activation of both the 
innate and adaptive immune response and may attenuate 
exhaustion of both T cells and NK cells expressing PD-1. In 
summary, engagement of NK cells, particularly via stimulatory 
mAbs, holds great promise for the future development of novel 
immuno-oncology therapeutics.
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Abbreviations

AA Amino acid
ADAM10 a disintegrin and metalloproteinase-10
ADAM17 a disintegrin and metalloproteinase-17
ADCC Antibody-dependent cellular cytotoxicity
ADCP antibody-dependent cellular phagocytosis
ADC(s) antibody-drug conjugates
aKIR(s) activating killer Ig-like receptors
AML acute myeloid leukemia
ANKET Antibody-based NK cell Engager Therapeutics
B7H3 B7 homolog 3 protein
BCMA B-cell maturation antigen
CAR Chimeric antigen receptor
CCR4 C-C chemokine receptor type 4
CD Cluster of differentiation
CD16A Cluster of differentiation 16A
CD3ζ CD3 zeta
CD96 cluster of differentiation 96
CDC complement-dependent cytotoxicity
CRS Cytokine release syndrome
DAP10 DNAX-activating protein 10
DNAM-1 DNAX accessory molecule-1
ECD extracellular domain
ERP5 endoplasmic reticulum protein 5
Fab fragment antigen-binding
FcϵRIγ Fc epsilon RI
Fcγ1 Fc gamma domain 1
FcγRIIIa Fc-gamma receptor IIIA
FcγRs Fc gamma receptors
FUT8 fucosyltransferase
GMD GDP mannose 4,6-dehydratase
GPI glycosylphosphatidylinositol
Grb growth factor receptor bound 2 protein
HCC hepatocellular carcinoma
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HER2 human epidermal growth factor receptor 2
HL Hodgkin lymphoma
HLA human leukocyte antigen
ICANs Immune effector cell-associated neurotoxicity 

syndrome
iKIR(s) inhibitory killer Ig-like receptors
IL-15 interleukin-15
IL-2 v interleukin-2 variant
Ipsc induced pluripotent stem cell
IRp60 inhibitor receptor protein
ITAM immunoreceptor tyrosine-based activation motif
KIR2DL1-L3 killer cell immunoglobulin like receptor, three Ig 

domains and long cytoplasmic tail 1–3
KIR3DL2 killer cell immunoglobulin like receptor three Ig 

domains and long cytoplasmic tail 2
LAIR-1 leukocyte-associated immunoglobulin-like recep

tor 1
mAb monoclonal antibody
MDS myeloid dysplastic syndrome
MHC Major histocompatibility complexes
MICA MHC class I chain-related protein A
MICB MHC class I chain-related protein sequence B
MICA/B MICA and MICB
MM Multiple myeloma
MMP-9 matrix metalloproteinase-9
MMP-14 matrix metalloproteinase −14
NCR natural cytotoxicity receptors
NFAT nuclear factor of activated T-cells
NFKB nuclear factor kappa-light-chain-enhancer of acti

vated B cells
NK Natural Killer
NKCEs NK cell engagers
NKG2A Natural Killer Group 2A
NKG2C Natural Killer group 2C
NKG2D Natural Killer Group 2D
NKT Natural Killer T cell
PBD pyrrolobenzodiazepine dimers
PD-1 programmed cell death 1 receptor
PD-L1 and PD-L2 programmed death-ligand 1 and 2
PI3K phosphoinositide 3-kinase
scFv single-chain variable fragment
siglec-7 sialic acid binding Ig like lectin 7
sMICA/B soluble MICA/B
Tandab tandem diabody
TCGA The Cancer Genome Atlas
TCR T cell receptor complex
TIGIT T cell immunoreceptor with Ig and ITIM domains
TIM-3 T cell immunoglobulin and mucin domain- 

containing protein 3
TME tumor microenvironment
TriNKET Tri-specific NKCE
ULBPs UL-16- binding proteins
VEGFR2 vascular endothelial growth factor receptor 2.
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